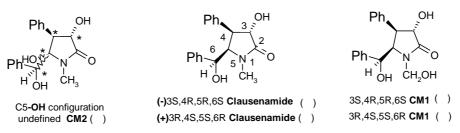
Study on the Synthesis of Metabolite CM2 of Clausenamide

Xing Zhou LI, Ke Mei WU, Liang HUANG*

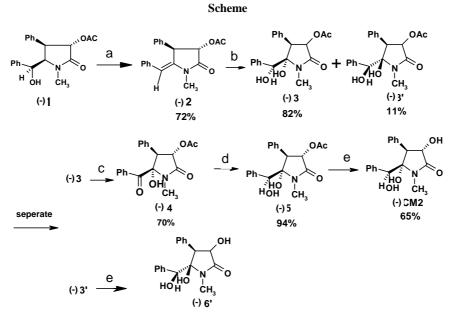

Institute of Materia Medica , Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050

Abstract: Synthesis of the optically active metabolite of clausenamide CM2 (3, 5-dihydroxy- $5-(\alpha-hydroxylbenzyl)-1$ -methyl-4-benzylpyrrolidin-2-one) from 3-O-acetyl- clausenamide was described.

Keywords: Metabolite, clausenamide, dehydration, dihydroxylation, deacylation.

(-) Clausenamide(I) possesses nootropic effect than its (+) isomer¹. The metabolites of these two optical enantiomers were almost the same, but the content of the metabolites **CM1**(III) and **CM2** (II) of (-) I were much higher than those of (+) I^2 . In order to study the difference of bioactivity between the enantiomers, synthesis of optically active **CM1**(III) and **CM2** (II) has been undertaken. The preparation of **CM1** was reported in the previous paper³, here the synthesis of **CM2** was described.

Figure 1



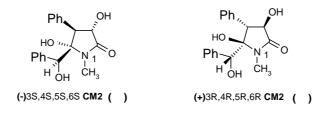
CM2 is the C5 hydroxylated product of of clausenamide (I), the hydroxylation could take place either at the same side (α -face) or at the opposite side (β -face) of the C5-**H** of (-) I. In any case the configuration of C6 should not be touched. But the direct introduction of the tertiary C5-**OH** is not an easy task. Therefore the synthetic route through hydroxylation of $\Delta^{5,6}$ (-) clausenamide (**2**)was designed for preparing the metabolite (-)**CM2** as shown in the **Scheme**.

(-)3-O-acetyl-clausenamide(1)(mp 244-246°C, $[\alpha]_D^{14} = -167$ (c 0.106, CHCl₃)) was dehydrated under the condition of POCl₃/pyridine⁴ at ambient temperature to give (-)2

^{*}E-mail: Lhang@public.bta.net.cn

(mp 119-120°C, $[\alpha]_D^{18} = -330$ (c 0.870, CHCl₃)). The NOE-DIFF indicated the double bond is in *trans* form.

Reagents and conditions: a. $POCl_3/Py$, b. $OsO_4/NMO/THF/Acetone$, c. DMSO/oxalyl chloride,/ THF/TEA, d. $NaBH_4/MeOH$, e. $Sm/I_2/MeOH$


Compound (-) **2** was *cis*-dihydroxylated with OsO_4/NMO to give the main product (-)**3**(mp 125-128°C, $[\alpha]_D^{15} = -323$ (c 0.346, CH₃OH)) with 82% yield and the minor product (-)**3'**. The NOE effect between the single sharp peak of C5-OH (δ , 5.66) and the the double peak of C4-H (δ , 3.76) indicated that C5-OH being at the same side(α -side)of C4-H, which means the *cis*-dihydroxylation mainly took place at the less hindered side as shown in **Scheme**. In this way the configuration of C6 was inverted from S as in (-) I to R. This most likely is not the right structure. The β -face dihydroxylated product(-)**3'** would retained the C6 S configuration and the C5-OH was at the β -face. It was deacylated to give **6'**. However the physical constants and spectral data of which did not coincide with what reported for (-) CM2.

From above experimental results, it is evident that (-)**CM2** has the C5-OH at the α -face with S configuration of C6. This led to try *trans*-dihydroxylation of (-) **2** with various methods, but all were failed. A pathway through oxidation of the C6-OH in (-) **3** to ketone (-)**4** and then reduced to hydroxyl group was adopted on the basis of the reduction of (-)ketone of clausenamide [(-)clausenamidon] giving stereospecific S configuration⁵ of C6. (-)**3** was oxidized by Swern oxidation to yield α -hydroxylketone (-)**4** (mp 125-128°C, $[\alpha]_D^{14} = -310$ (c 0.360, CHCl₃)). Reduction of the ketone group of (-)**4** with NaBH₄ gave (-)**5** (mp 153-156°C, $[\alpha]_D^{18} = -31.9$ (c 0.455, CH₃OH)). Under the mild and neutral deacylation condition of Sm/I₂/MeOH⁶ an oil was obtained with identical physical constants and spectral data as reported for (-)**CM2** ($[\alpha]_D^{18} = 53.6$ (c

340 Study on the Synthesis of Metabolite CM2 of Clausenamide

0.497, CH₃OH)). (+) Clausenamide($[\alpha]_D^{18} = +54.1$ (c 0.475, CH₃OH)) gave the enantiomer (+) CM2 by the same process. According to the C5-OH substitution, the absolute configurations of (-)CM2 and (+)CM2 were assigned as (3S,4S,5S,6S) and (3R, 4R, 5R, 6R) respectively as shown in Figure 2.

Acknowledgment

This work was supported by the National Natural Science Foundation of China. (No.29790121)

References

- 1. W. Z. DUAN Acta Pharmaceutica Sinica 1997, 32 (4), 259.
- 2. Q. Q.YAO, Chin. J.of Pharmacology and Toxicology, 1999, 13 (3), 214.
- 3. X. Z. LI, Chin. Chem. Lett., 2002, 13,528.
- 4. J. L. Giner, J. Org. Chem, 1989, 54, 3690.
- 5. a. L. HUANG, Chin. Chem.Lett., 1994, 5 (4), 267.
- b. H. HONG, PhD thesis, 1984.
- 6. R. Yanada, Synlett, 1995, 1261.

Received 16 May, 2002